Introducing

AminoLogics Amino Acids Business

April 2016

AminoLogics

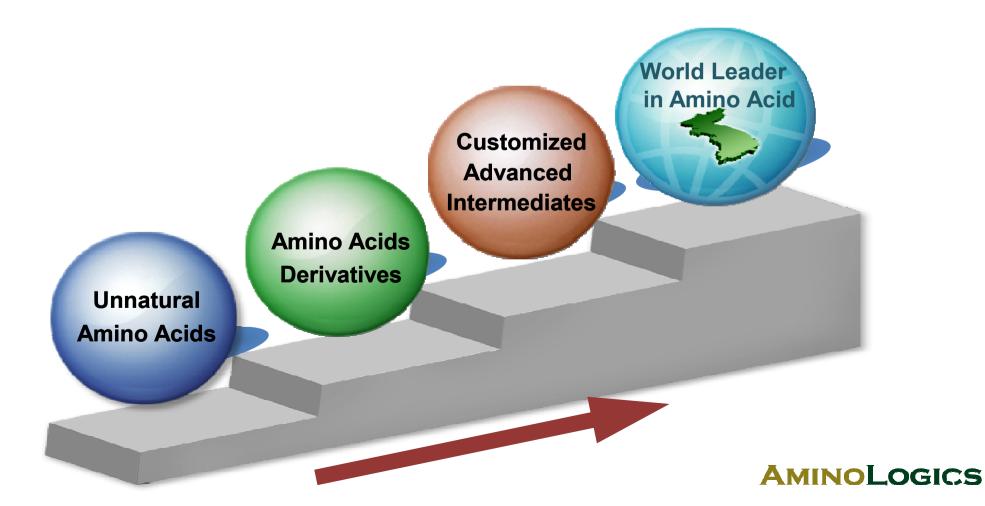
Part 1_ L C

Part 2_ Technology & Products

Part 3_ Facilities

Part 4_ Business focus

Company Profile


Company	AminoLogics Co., Ltd.	
Founded	September, 1997	
Headquarters	Gangnam-gu, Seoul, Korea	
R&D Center	Sungnam, Gyeonggi-do, Korea	
CEO	J.S. Oh, S.S. Oh	
Business	Amino acids, amino acids derivatives, pharmaceutical intermediates, and API	

Company History

1997	- Established Alogics Co., Ltd. to manufacture semi-conductors
2000	- Developed Color Quad ASIC, DVR ASIC
2004	- Certified as a "venture corporation" - Listed on the KOSDAQ stock market
2006	- Developed DVR Soc, CCTV Soc
2009	- Acquired by AminoLux Co., Ltd.
	- Changed its name to AminoLogics Co., Ltd.
	- Founded Amino Acid Business Unit
2010	- Selected as one of 10 core participant companies for WPM (World Premier Materials) Program(R&D Projects from Korean Government) 2010-2019
2014	- Acquired by Samoh Pharm Co., Ltd.

Amino Acids Business

Development, Manufacturing, and Supply of
Unnatural Amino Acids, Amino Acids Derivatives, and
Amino-Acid Based Advanced Intermediates with World's Best Quality

Part 2_ Technology & Products

Part 3_ Facilities

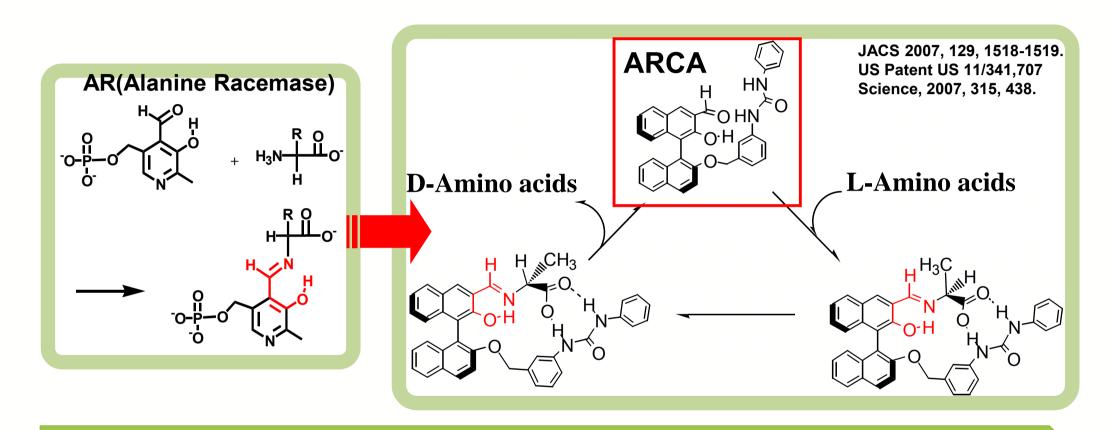
Part 4_ Business focus

Core Technology ARCA Technology

- Inventor: Professor Kwan-Mook Kim, Ewha Womans University
- Publication: Science Magazine (2007, 315, 438),
 J.Org. Chem. (2008, 73, 5996-5999), J.Am.Chem.Soc. (2007, 129, 1518-1519),
 Organic Letter (2005, 6, 2591), Organic Letter (2005, 7, 3525-3527)

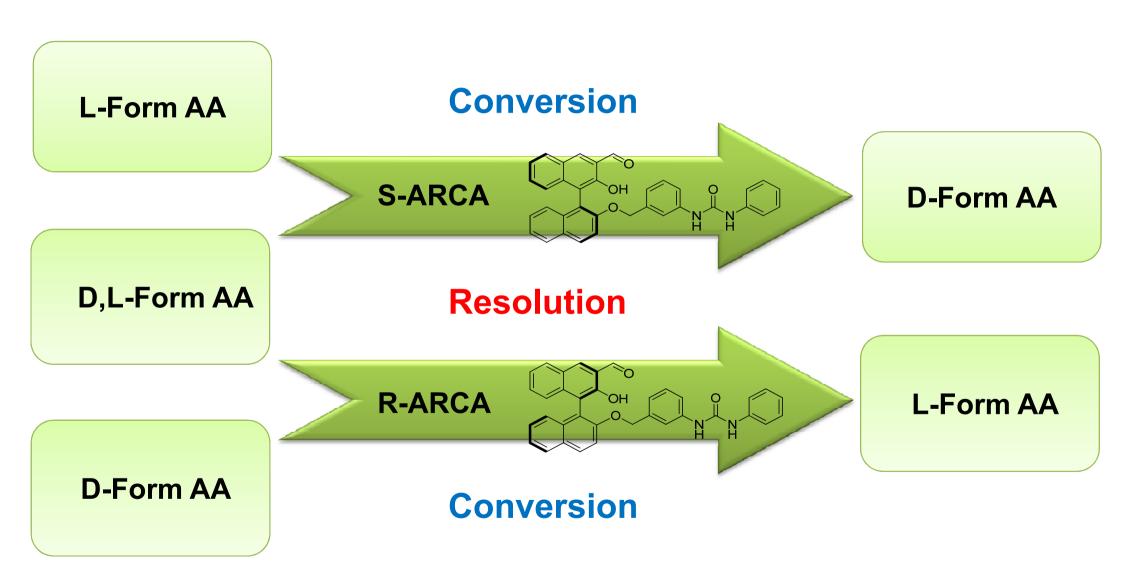
Science Magazine (2007, 315, 438)

"The authors have prepared a small-molecule receptor that binds amino acids through a similar motif but also incorporates a chiral binaphthyl backbone."


Science Magazine Volume 315, Number 5811, Issue of 26, January 2007 J.Am.Chem.Soc. (2007, 129, 1518-1519)

"Bioinspired Chemical Inversion of L-Amino Acids to D-Amino Acids"

Journal of American Chemical Society Volume 129, Number 6, January 2007


ARCA Technology Overview

- ARCA is a small molecule chiral receptor that binds amino acids through a similar motif of Alanine Racemase but also incorporates a chiral binaphthyl backbone.
- While AR is only able to transform L-Amino Acids into their DL-racemic mixture, ARCA is able to transform DL-racemic mixtures into D-amino acids or L-amino acids

ARCA Technology - Conversion & Resolution

ARCA Technology Highlights

Price Competitiveness

Broad Substrate Scope

Multi-Scale Process

High Quality

Efficient Process

Raw Material (Racemic/L-Amino Acid) + Process Fee

α-Amino Acid, β-Amino Acid, 1,2-Amino Alcohol

Cost-effective process applicable in any scale

High enantiomer excess

Simple process through a circulation of ARCA and solvent

Expertise in Other Chiral Technologies

Other Technical Capabilities

- Crystallization-induced Asymmetric Transformation
- Dynamic Kinetic Resolution
- Chiral Inversion
- Diastereomeric Resolution
- Derivatization of Amino Acids, Amino Alcohols and Other Amine Compounds

Process Development

Process Development From Lab to Pilot to Full Commercial

Inquiry (Compound, Volume, Timing, Spec, Target Price)

Feasibility Test & Proposal

Process Development

Production

Optimization

Main Products

Product	Durativat	CACAL	Dev.	Audiahla Darindina Farma
Group	Product	CAS No.	Stage	Available Derivatives Forms
	D-Alanine	338-69-2		Boc-, Fmoc-, CBZ-
	D-Arginine	157-06-2		-HCl, Fmoc/Pbf-, Boc/Tos-, Fmoc/Tos-
	D-Cysteine	921-01-7		-HCl H2O, Boc-, Boc/AcmS-, Fmoc-, Fmoc/tBuS, Fmoc/TrtS
	D-Histidine	351-50-8	1	Boc-, Fmoc-, Fmoc/TrtN-, CBZ-
	D-Homophenylalanine	82795-51-5	1	Boc-, Fmoc-
	D-allo-Isoleucine	1509-35-9		Boc-, Fmoc-
	D-Leucine	328-38-1		Ac-, Boc-, Fmoc-, CBZ-
	D-Phenylalanine	673-06-3		Boc-, Fmoc-, CBZ-
	R-Beta-Phenylalanine	13921-90-9	om	Boc-, Fmoc-
	S-Beta-Phenylalanine	40856-44-8		Boc-, Fmoc-
Amino Acid & Derivatives	D-Serine	312-84-5	Commercial	-Me, -OMe HCl, Boc-, Fmoc-, Fmoc/tBuO-, CBZ-
	L-Serine	56-45-1		-Me, -OMe HCl, Boc-, Fmoc-, Fmoc/tBuO-, CBZ-
	D-allo-Threonine	24830-94-2		Boc-, Fmoc-, Fmoc/tBuO-
	3-(2-Naphthyl)-D-alanine	76985-09-6		Boc-, Fmoc-, CBZ-
	3-(2-Naphthyl)-L-alanine	58438-03-2		Boc-, Fmoc-, CBZ-
	4-Chloro-D-phenylalanine	14091-08-8		Boc-, Fmoc-
	4-Chloro-L-phenylalanine	14173-39-8		Boc-, Fmoc-
	3-(3-Pyridyl)-D-alanine	70702-47-5		Boc-, Fmoc-
	3-(3-Pyridyl)-L-alanine	64090-98-8		Boc-, Fmoc-
	3-(2-Thienyl)-L-alanine	22951-96-8		Boc-, Fmoc-
	D-Lysine	923-27-3		Boc-, Fmoc-
	D-Proline	344-25-2		Boc-, Fmoc-
	D-Threonine	632-20-2	R&D	Boc-, Fmoc-, Fmoc/tBuO-
	D-Tryptophan	153-94-6		Boc-, Fmoc-, CBZ-, Fmoc/BocN-
	D-Valine	640-68-6	<u> </u>	Boc-, Fmoc-
	3-Chloro-D-alanine OMe.HCl	112346-82-4		
	Boc-D-Bpa-OH	117666-94-1] _	-
	Fmoc-D-Cha-OH	144701-25-7	T Ö	
Other	Fmoc-D-Hse(Trt)-OH	257886-01-4	_ mm	
Amino Acid Derivatives	Fmoc-Hse(Trt)-OH	111061-55-3	Commercial	
	Fmoc-Oic-OH	130309-37-4	<u>cia</u>	-
	Fmoc-D-Tic-OH	130309-33-0		
	Fmoc-Trp(Boc)-OH	143824-78-6		

- Price competitiveness
- Broad substrate scope(Various clinical projects/peptide synthesis use)
- High quality
- KG-MT scale production ready
- Custom-development and scale-up available

Part 1_ Intro

Part 2_ Technology & Products

Part 3_ Facilities

Part 4_ Business focus

R&D Facilities

Quality Control

OP, CP, Assay
Residual Solvent
Pos / Neg Ion Analysis
Specific Rotation
Titration Assay
-

UV System, FT-IR, Oven, Maffle's Furnace, Ultra-pure Water Plant, etc. (Over 40 Equipments)

R&D Facilities

Pilot (In-house Facilities)

< Work-up Glass Reactor 20L System >

- Made by Korean Domestic glass
- Dimensions/approvals
 √ Height 1.50m approx / √ Width 1.00m approx
 √ Length 1.00m approx / √ Total Volume 21LT
- Permitted operating conditions
 √ Permitted operating pressure reactor -1/+0.5 bar
 √ Permitted operating tempera reactor -30/+200 °C
- Materials
 √ Wetted parts Borosilicate glass 3.3

< GR 20 Reaction System >

- Made by Buchi glass (Reactor body with bottom value)
- Dimensions/approvals
 √ Height 2.0m approx / √ Width 1.00m approx
 √ Length 1.00m approx / √ Total Volume 21LT
- Permitted operating conditions
 √ Permitted operating pressure reactor -1/+0.5 bar
 √ Permitted operating tempera reactor -60/+200 °C
- Materials
 √ Wetted parts Borosilicate glass 3.3

Pilot Scale

Ulsan Fine Chemical Industry Center (UFIC) GMP-like facilities

• Reactor : GL 100L, GL 250L, GL 630L

• Filter : Nutsche filter (50L, 100 L, 200L), Filter & dryer (300L)

• Dryer : Vacuum dryer (500L, 1,500L), Rotary dryer (400L)

• Mill : Co-Mill (cap. 200L/hr)

Commercial Scale

- Contract manufacturing GMP / Non-GMP facilities
- Samoh(Parent Company) GMP facilities

Types	Sizes	Other Equip.	
G/L Reactor	3.0 m ³ 5.0m ³ 2.0 m ³ 3.0 m ³ 0.10m ³	Dryers (2) Oscillator Co-Mill	
SUS Reactor	5.0m ³ 4.0 m ³ 3.0 m ³	Pin-Mill Nutche- Filter Centrifuge	
Tef. Reactor	2.0 m ³		

New facilities (scheduled to open in June, 2016)

Types	Sizes	Other Equip.	
G/L	7m³	Nutche Filter Centrifuge Pin-Mill Fluid Bed Dryer Vacuum Oven Dryer Column Tower Molecular Distillator	
Reactor	5m ³		
SUS Reactor	5m³ 5m³ 2m³		

Image of New Production Facilities

Location of Production Facilities

Commercial Facilities: Samoh Sihwa Plant in Ansan, Korea

Commercial Facilities:
AminoLogics & Samoh
Ohsong Plant
in Ohsong, Korea
(Scheduled to open in June,
2016)

Pilot Facilities:
Ulsan Fine Chemical
Industry Center (UFIC)
in Ulsan, Korea

Part 1_ Intro

Part 2_ Technology & Products

Part 3_ Facilities

Part 4_ Business focus

Focus in Unnatural Amino Acids

D-Amino Acids are key elements for 3,000s of Amino Acids Derivatives

High-Value Active Ingredients & Active Pharmaceutical Ingredients

Commercialization of ARCA Technology

- → New Market Frontier
- Meeting the Unmet Needs Providing Technology & Low-Cost Solutions
- Market Expansion Synergy Effects by Collaborating with Bio- and Pharmaceutical Industries

Unnatural Amino Acids and More

Unnatural Amino Acids Manufacturer to Integrated Solution Provider

Pharmaceutical, Agrochemical, Cosmetics, Food Market

Bulk Amino Acids Intermediates & Generic APIs

Peptides &
Synthetic
Pharmaceutical
Market

Academic and Institutional Research

High Value Amino Acids

Custom Synthesis

Drug Discovery, & Developmental Drug Market

Thank You!